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1. Introduction

In the investigation of the vibrations of elastic arms and their suppression in the field of
mechanical engineering and robotics, various systems may be modeled as a clamped–free
Bernoulli–Euler beam to which one or several helical spring–mass systems are attached. Some of
the numerous publications on this subject are given in Refs. [1–4]. The common aspect of all these
works is that the mass of the helical springs is not taken into account. It was observed that the
effects of this assumption on the numerical values of the eigenfrequencies of these combined
systems had not been investigated in the literature. As a first step to cover this gap, the frequency
equation of the combined system described in Ref. [1] is derived, but with the helical spring having
mass and without the added tip mass. To this end, the helical spring, as in literature [5], is modeled
by an appropriate elastic rod that vibrates longitudinally.

The frequency equation obtained is solved numerically for various non-dimensional mass and
spring parameters. Comparison with the massless spring case reveals that neglecting the mass can
lead to serious errors for some parameter combinations.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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2. Theory

The problem to be investigated in the present note is the natural vibration problem of the
mechanical system shown in Fig. 1. It consists of a cantilevered Bernoulli–Euler beam to which an
axially vibrating rod with a tip mass M is attached at the free end. It is assumed that this
combined system vibrates only in the plane of the paper. The physical properties of the system are
as follows. The length, mass per unit length and bending rigidity of the beam are L1, m1, E1I1
whereas the corresponding quantities and the axial rigidity of the rod are L2, m2, E2A2,
respectively. It is to be noted that E2A2/L2 corresponds to the spring constant of the helical spring.

The planar bending displacements of the beam in the coordinate system x1, w1 are denoted as
w1(x1,t), whereas the axial displacements of the rod are denoted as w2(x2,t), where x2 ¼ 0
corresponds to the free end of the beam. Both w1(x1,t) and w2(x2,t) are assumed to be small.

In order to obtain the equations of motion of the system, Hamilton’s principleZt1

t0

dðT � V Þ dt ¼ 0 (1)

will be applied, where T and V denote the kinetic and potential energies, respectively. The total
kinetic energy is

T ¼ 1
2

m1

ZL1

0

_w2
1ðx1; tÞ dx1 þ

1
2

m2

ZL2

0

½ _w2ðx2; tÞ þ _w1ðL1; tÞ�
2 dx2

þ 1
2

M½ _w1ðL1; tÞ þ _w2ðL2; tÞ�
2. ð2Þ

The potential energy consists of two parts, one due to bending and the other due to axial
displacements

V ¼ 1
2

E1I1

Z L1

0

w002
1ðx1; tÞ dx1 þ

1
2

E2A2

Z L2

0

w02
2ðx2; tÞ dx2. (3)

In the above formulations, dots and primes denote partial derivatives with respect to time t and
the position coordinate x1 or x2, respectively. After putting expressions (2) and (3) into expression
Fig. 1. Vibrational system under study: cantilevered beam carrying an axially vibrating rod with a tip mass.
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(1) and carrying out the necessary variations, the following equations of motion of the beam and
rod are obtained:

E1I1wiv
1 ðx1; tÞ þ m1 €w1ðx1; tÞ ¼ 0; E2A2w00

2ðx2; tÞ � m2 €w2ðx2; tÞ ¼ m2 €w1ðL1; tÞ. (4,5)

The corresponding boundary and matching conditions for the two elastic domains are as
follows

w1ð0; tÞ ¼ 0; w0
1ð0; tÞ ¼ 0; w00

1ðL1; tÞ ¼ 0; w2ð0; tÞ ¼ 0, (629)

ZL2

0

m2½ €w2ðx2; tÞ þ €w1ðL1; tÞ�dx2 þ M½ €w1ðL1; tÞ þ €w2ðL2; tÞ� � E1I1w000
1ðL1; tÞ ¼ 0, (10)

M½ €w1ðL1; tÞ þ €w2ðL2; tÞ� þ E2A2w0
2ðL2; tÞ ¼ 0. (11)

The last two equations express the force balances at x1 ¼ L1 and x2 ¼ L2; respectively, whereas
the meanings of the boundary conditions (6–9) are evident.

Using the standard method of separation of variables, one assumes

w1ðx1; tÞ ¼ W 1ðx1Þ cos ot; w2ðx2; tÞ ¼ W 2ðx2Þ cos ot, (12,13)

where W 1ðx1Þ and W 2ðx2Þ are the corresponding amplitude functions of the beam and the rod,
respectively, and o is the unknown eigenfrequency of the combined system. Substituting these
expressions into the partial differential equations (4) and (5) results in the following ordinary
differential equations:

W iv
1 ðx1Þ � b4W 1ðx1Þ ¼ 0; W 00

2ðx2Þ þ g2W 2ðx2Þ ¼ �g2W 1ðL1Þ. (14,15)

Here, the following abbreviations are introduced:

b4
¼ m1o2=E1I1; g ¼ m2b2; m4 ¼

E1I1m2

E2A2m1
. (16)

Now, the corresponding boundary conditions are

W 1ð0Þ ¼ 0; W 0
1ð0Þ ¼ 0; W 00

1ðL1Þ ¼ 0; W 2ð0Þ ¼ 0 (17220)

whereas the matching conditions (10) and (11) give

m2o2

ZL2

0

½W 2ðx2Þ þ W 1ðL1Þ� dx2 þ Mo2½W 1ðL1Þ þ W 2ðL2Þ� þ E1I1W 000
1ðL1Þ ¼ 0; (21)

�Mo2½W 1ðL1Þ þ W 2ðL2Þ� þ E2A2W 0
2ðL2Þ ¼ 0. (22)

Here, primes on W1(x1) and W2(x2) denote derivatives with respect to position coordinates x1

and x2, respectively.
The general solutions of the ordinary differential equations (14) and (15) are simply

W 1ðx1Þ ¼ C1 sin bx1 þ C2 cos bx1 þ C3 sinh bx1 þ C4 cosh bx1, (23)

W 2ðx2Þ ¼ D1 sin gx2 þ D2 cos gx2 � W 1ðL1Þ, (24)

where C1–C4 and D1, D2 are six integration constants to be evaluated via conditions (17–22).
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The application of conditions (17–22) to solutions (23) and (24) yields a set of six homogeneous
equations for the unknown coefficients C1–C4 and D1, D2. For a non-trivial solution to
exist, the determinant of the coefficient matrix of this set of equations should be equal to zero
which leads after some calculations to the following frequency equation of the vibrational system
in Fig. 1:

½ðsin b̄ cosh b̄� cos b̄ sinh b̄Þða11b̄
2
þ sin gL2 þ cos gL2 � 1Þ � a22b̄ð1 þ cos b̄ cosh b̄Þ�

: sin gL2 �
a33

b̄
2

cos gL2

 !
� ð1 � cos gL2 þ a11b̄

2
sin gL2Þðsin b̄ cosh b̄� cos b̄ sinh b̄Þ

: cos gL2 þ
a33

b̄
2

sin gL2

 !
¼ 0:

(25)

Here, in addition to those given in Eq. (16), the following abbreviations are introduced:

b̄ ¼ bL1; m̄21 ¼ m2L2=m1L1; ak ¼ ðE2A2=L2Þ=ðE1I1=L3
1Þ; aM ¼ M=m1L1,

gL2 ¼ b̄
2

ffiffiffiffiffiffiffiffi
m̄21

ak

r
; a11 ¼

aMffiffiffiffiffiffiffiffiffiffiffiffi
m̄21ak

p ; a22 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

m̄21ak

p ; a33 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
m̄21ak

p

aM

. ð26Þ

Whence the roots b̄ of Eq. (25) are calculated numerically, the eigenfrequencies o of the
vibrational system in Fig. 1 are obtained via Eq. (16) as

o ¼ b̄
2

ffiffiffiffiffiffiffiffiffiffiffi
E1I1

m1L4
1

s
. (27)

Recognizing that m̄21 denotes the ratio of the mass of the rod to that of the beam, it is reasonable
to investigate as to which expression the frequency equation in Eq. (25) reduces for the limit
m̄21 ! 0: After some calculations and by using the well-known rule of L’Hospital, it can be shown
that Eq. (25) reduces to

ðak � aM b̄
4
Þð1 þ cos b̄ cosh b̄Þ þ akaM b̄ðcos b̄ sinh b̄� sin b̄ cosh b̄Þ ¼ 0. (28)

But this equation is just the frequency equation of a cantilevered Bernoulli–Euler beam carrying a
massless spring–mass at the free end [6].

For getting trial values for the numerical solution of the frequency equation (25) on the one
hand and for comparison purposes on the other, an approximate formula for the fundamental
frequency of the system in Fig. 1 will be derived in the following.

According to Dunkerley’s procedure, the mechanical system in Fig. 1 can be thought of as the
‘‘sum’’ of three subsystems shown in Fig. 2.

The fundamental frequency o11 of the bare cantilevered Bernoulli–Euler beam is

o11 ¼ b̄
2

11

ffiffiffiffiffiffiffiffiffiffiffi
E1I1

m1L1
4

s
; b̄11 ¼ 1:87510407. (29)
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Making use of the more general expression in Ref. [7], the frequency equation of the second
subsystem in Fig. 2 can be shown to be

tan b̄22 �
3

akb̄22

¼ 0. (30)

Once this transcendental equation is solved with respect to b̄22; the fundamental frequency of the
second subsystem o22 is simply

o22 ¼ b̄22

ffiffiffiffiffiffiffiffiffiffiffi
E2A2

m2L2
2

s
. (31)

Finally, the eigenfrequency of the third subsystem in Fig. 2 can be obtained as

o33 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2

Mðk1 þ k2Þ

s
, (32)

where the following spring constants

k1 ¼
3E1I1

L3
1

; k2 ¼
E2A2

L2
(33)

are introduced. As is known, k1 represents the tip stiffness of the cantilevered beam.
According to Dunkerley’s method, the approximate value of the fundamental frequency of the

vibrational system in Fig. 1, o1 is obtained via

1

o2
1

¼
1

o2
11

þ
1

o2
22

þ
1

o2
33

. (34)

Substitution of the eigenfrequencies given in Eqs. (29),(31) and (32) into (34) yields

o1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̄

4

11

1þ m̄21

ak

b̄
4

11

b̄
2

22

þ b̄
4

11
aM ð3þakÞ

3ak

vuuut o0, (35)
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where o2
0 ¼ E1I1=m1L4

1 is introduced. It is worth noting that b̄22 represents the first root of Eq.
(30) for the corresponding ak value.

In case of larger values of the non-dimensional stiffness parameter ak; the first root of Eq. (30)
can be given approximately but in a very accurate form. To this end, similar to the approach in
Ref. [8], the approximation

tan b̄22 � b̄22 þ
b̄

3

22

3
þ

2

15
b̄

5

22 (36)

is made. After substitution of this into Eq. (30), one obtains

b̄22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

1 þ
b̄
2

22

3
þ 2

15
b̄

4

22

s
, (37)

where Z ¼ 3=ak is introduced. The first approximation b̄22 �
ffiffiffi
Z

p
obtained from Eq. (30) yields

after substitution into the right-hand side of Eq. (37)

b̄22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z

1 þ
Z
3
þ 2

15
Z2

s
. (38)

Hence, for large values of ak; formula (35) based on Dunkerley’s procedure can be reformulated
as

o1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3akb̄

4

11

3ak þ m̄21b̄
4

11 1þ ak þ
6

5ak


 �
þ aM b̄

4

11ð3þ akÞ

vuuut o0 (39)

which can be evaluated directly for given values of the non-dimensional stiffness and mass
parameters ak and aM ; without having to solve an additional transcendental equation as
before.
3. Numerical results

This section is devoted to the numerical evaluation of the formulas established in the preceding
section. Recognizing that m̄21 ¼ 0 corresponds to the case of the mass of the axially vibrating rod,
i.e., helical spring being zero, it is reasonable to make a comparison with the numerical results
collected in Table 3 of Ref. [1] in which mass of the spring was neglected. The non-dimensional
spring and mass parameters ake and ame correspond to ak and aM here, respectively.

Table 1 reflects numerical results for the non-dimensional fundamental frequency parameter
o1=o0 of the system in Fig. 1 taken from Ref. [1] and from the solution of Eq. (25) in connection
with Eq. (27) and results obtained from Dunkerley-based formula (35). All numerical calculations
were carried out with MATLAB.

The first figure in the column reading downwards is the fundamental frequency parameter
o1=o0 taken from the second rows of Table 3 in Ref. [1], corresponding to m̄21 ¼ 0 here; the
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Table 1

Non-dimensional fundamental frequency parameters o1=o0 of the system in Fig. 1 for various values of the non-

dimensional spring and mass ratios

ak

aM 0.5 1 5 10 50 100

0.921122 1.205409 1.764572 1.883690 1.988822 2.002508

�0.0039 �0.0045 �0.0063 �0.0065 �0.0066 �0.0066

0.917497 1.199944 1.753515 1.871398 1.975636 1.989208

�0.0375 �0.0423 �0.0551 �0.0573 �0.0594 �0.0599

0.5 0.886569 1.154424 1.667356 1.775722 1.870729 1.882549

�0.0323 �0.0450 �0.0442 �0.0327 �0.0157 �0.0129

0.891388 1.151183 1.686505 1.822010 1.957560 1.976717

�0.0682 �0.0827 �0.0900 �0.0818 �0.0688 �0.0666

0.858323 1.105744 1.605839 1.729581 1.851979 1.869160

0.653037 0.859420 1.307155 1.419384 1.527404 1.542201

�0.0020 �0.0023 �0.0034 �0.0037 �0.0039 �0.0040

0.651748 0.857457 1.302682 1.414102 1.521381 1.536077

�0.0192 �0.0220 �0.0316 �0.0342 �0.0367 �0.0371

1 0.640468 0.840520 1.265828 1.370787 1.471349 1.484919

�0.0167 �0.0240 �0.0270 �0.0210 �0.0103 �0.0084

0.642134 0.838810 1.271800 1.389563 1.511643 1.529276

�0.0361 �0.0450 �0.0543 �0.0508 �0.0432 �0.0418

0.629437 0.820734 1.236118 1.347233 1.461410 1.477811

0.292628 0.386724 0.606746 0.670001 0.736996 0.746678

�0.00039 �0.00046 �0.00073 �0.00083 �0.00092 �0.00080

0.292513 0.386546 0.606303 0.669445 0.736315 0.746079

�0.0039 �0.0045 �0.0071 �0.0081 �0.0090 �0.0091

5 0.291477 0.384965 0.602423 0.664596 0.730327 0.739910

�0.0034 �0.0050 �0.0064 �0.0052 �0.0027 �0.0020

0.291624 0.384769 0.602849 0.666484 0.735024 0.745165

�0.0076 �0.0097 �0.0129 �0.0125 �0.0108 �0.0103

0.290406 0.382979 0.598922 0.661645 0.729023 0.738974

0.206969 0.273659 0.431021 0.477054 0.526491 0.533782

�0.00019 �0.00023 �0.00037 �0.00042 �0.00047 �0.00048

0.206929 0.273596 0.430862 0.476853 0.526242 0.533526

�0.0020 �0.0023 �0.0036 �0.0041 �0.0047 �0.0047

10 0.206561 0.273034 0.429458 0.475082 0.524034 0.531249

�0.0017 �0.0025 �0.0033 �0.0027 �0.0014 �0.0011

0.206613 0.272963 0.429606 0.475765 0.525761 0.533184

�0.0038 �0.0049 �0.0066 �0.0064 �0.0056 �0.0054

0.206179 0.272321 0.428178 0.473995 0.523551 0.530903

0.092578 0.122457 0.193471 0.214535 0.237417 0.240821

�0.000043 �0.000049 �0.000072 �0.000084 �0.000093 �0.000100

0.092574 0.122451 0.193457 0.214517 0.237395 0.240797

�0.00043 �0.00047 �0.00074 �0.00084 �0.00096 �0.00098
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Table 1 (continued )

ak

aM 0.5 1 5 10 50 100

50 0.092541 0.122400 0.193328 0.214354 0.237190 0.240586

�0.00036 �0.00051 �0.00067 �0.00055 �0.00028 �0.00023

0.092545 0.122394 0.193342 0.214416 0.237350 0.240765

�0.00078 �0.00099 �0.0013 �0.0013 �0.0011 �0.0011

0.092506 0.122336 0.193211 0.214254 0.237146 0.240554

0.065464 0.086596 0.136867 0.151805 0.168056 0.170475

�0.000031 �0.000023 �0.000037 �0.000040 �0.000054 �0.000053

0.065462 0.086594 0.136862 0.151799 0.168047 0.170466

�0.00020 �0.00023 �0.00037 �0.00042 �0.00049 �0.00049

100 0.065451 0.086576 0.136817 0.151741 0.167974 0.170391

�0.00018 �0.00025 �0.00033 �0.00021 �0.00015 �0.00012

0.065452 0.086574 0.136822 0.151763 0.168031 0.170455

�0.00038 �0.00050 �0.00067 �0.00066 �0.00058 �0.00056

0.065439 0.086553 0.136775 0.151705 0.167959 0.170380

The first figure reading downwards is the fundamental frequency parameter taken from Ref. [1], the second and third

are obtained from Eq. (25) for m̄21 ¼ 0:01; 0.1 respectively. The fourth and fifth are Dunkerley-based values obtained

from formula (35) also for m̄21 ¼ 0:01 and 0.1, respectively. The right-shifted values indicate relative errors with respect

to the first-row values.

Table 2

Numerical solutions of Eq. (30) especially for large ak values and approximate solutions given by Eq. (38)

ak b̄22 (from Eq. (30)) b̄22 (from Eq. (38))

0.5 1.34955282 0.87705802

1 1.19245883 0.96824584

5 0.70506550 0.69337525

10 0.52179118 0.51940752

50 0.24252625 0.24247858

100 0.17234380 0.17233526

200 0.12216914 0.12216762

300 0.09983364 0.09983309

400 0.08649444 0.08649417

500 0.07738229 0.07738214

600 0.07065181 0.07065171

700 0.06541864 0.06541858

800 0.06119900 0.06119895

900 0.05770297 0.05770294

1000 0.05474488 0.05474486

M. Gürgöze / Journal of Sound and Vibration 282 (2005) 1221–12301228
second and third are frequency parameters obtained from Eq. (25) for m̄21 ¼ 0:01; 0.1,
respectively, whereas the fourth and fifth are approximate values coming from the Dunkerley-
based formula (35), for m̄21 ¼ 0:01 and 0.1, respectively.
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It is worth noting that the first figures can be obtained from Eq. (28) as well, as this equation is
equivalent to that given in Refs. [1,6] for the special case m̄21 ¼ 0: The right-shifted values in each
cell indicate the relative errors with respect to the first-row values.

As expected, the values given in the fourth and fifth rows which are based on Dunkerley’s
formula, are smaller than those in the second and third rows; indeed, it is a known fact that the
Dunkerley-based values are always smaller than the actual values. These values constitute very
suitable initial values in the numerical solution of the transcendental Eq. (25) from which the
second- and third-row values are obtained.

It is natural that the values in the second and third rows are smaller than the first-row values
which correspond to the massless spring case, because these correspond to the case with the spring
with mass. On the other hand, the third-row values are smaller than the second-row values,
because the spring mass in the third row is 10 times the one in the second row. In harmony with
this fact, the fifth-row values are smaller than the fourth-row values. It can be said that the relative
errors corresponding to m̄21 ¼ 0:1 are approximately 10 times those for the case m̄21 ¼ 0:01:

Moving downward in a single column in the table, i.e., as aM gets larger, the relative errors get
smaller. On the contrary, for a fixed aM value, the errors increase in general towards the larger ak

values. Thus, Table 1 leads to the conclusion that neglecting the spring mass will result in larger
errors especially in the small aM and large ak regions.

In Table 2, the numerical solutions of Eq. (30), especially for large ak values are combined with
the approximate solutions given in Eq. (38). It is clearly seen that formula (38) gives accurate
approximate values as ak gets larger.
4. Conclusions

As the model of many actual systems in the literature, Bernoulli–Euler beams with various
supporting conditions and spring–mass additions are used. However, in these applications the
helical springs are frequently assumed to be massless. In the present study, a helical spring with
mass is modeled as a longitudinally vibrating rod, attached to the tip of a cantilevered beam
together with an additional mass, thus composing the system under study. The frequency
equation of this combined system is derived. Comparison of the numerical results with the
massless spring case reveals the fact that neglecting the mass can lead to serious errors for some
parameter combinations.
References
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